skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ruiz, Alberto_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ferromagnetic metal Fe3GeTe2(FGT), whose structure exhibits weak van‐der‐Waals interactions between 5‐atom thick layers, was subjected to liquid‐phase exfoliation (LPE) in N‐methyl pyrrolidone (NMP) to yield a suspension of nanosheets that were separated into several fractions by successive centrifugation at different speeds. Electron microscopy confirmed successful exfoliation of bulk FGT to nanosheets as thin as 6 nm. The ferromagnetic ordering temperature for the nanosheets gradually decreased with the increase in the centrifugation speed used to isolate the 2D material. These nanosheets were resuspended in NMP and treated with an organic acceptor, 7,7,8,8‐tetracyano‐quinodimethane (TCNQ), which led to precipitation of FGT‐TCNQ composite. The formation of the composite material is accompanied by charge transfer from the FGT nanosheets to TCNQ molecules, generating TCNQ⋅radical anions, as revealed by experimental vibrational spectra and supported by first principles calculations. Remarkably, a substantial increase in magnetic anisotropy was observed, as manifested by the increase in the coercive field from nearly zero in bulk FGT to 1.0 kOe in the exfoliated nanosheets and then to 5.4 kOe in the FGT‐TCNQ composite. The dramatic increase in coercivity of the composite suggests that functionalization with redox‐active molecules provides an appealing pathway to enhancing magnetic properties of 2D materials. 
    more » « less